TED (21))3041
(Revision	1 - 2021

2110220232

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2023

ELECTRIC CIRCUITS & NETWORKS

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cognitive level
1.	Define form factor of an alternating waveform.	M1.01	R
2.	In a series RLC circuit, resonance occurs when	M1.02	R
3.	Define Ohms law.	M2.02	R
4.	Which transformer has primary and secondary winding coupled	M2.04	R
	electrically and magnetically?		
5.	is the EMF equation of a DC Generator.	M3.01	R
6.	Current drawn by the armature of a DC motor is directly proportional	M3.02	R
	to		
7.	Mention the two types of rotor employed in alternator.	M4.01	R
8.	The rotational speed of amotor is determined by the	M4.03	R
	input pulse frequency.		
9.	AC motor used in mixer grinder is	M4.03	R

PART-B

II. Answer any eight questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks)
Module Outcome Cognitive level

1.	Define the following terms.	M1.01	R
	(i) Power factor (ii) Reactive power		
2.	Draw the phasor diagram of the R-C series circuit and describe the phasor components.	M1.03	R
3.	Compare performance parameters of Series and parallel RLC Circuits.	M1.04	U
4.	Define the following terms in network.	M2.01	R
	(i) Node (ii) mesh and (iii) maximum power transfer theorem.		
5.	Explain the different iron losses in a transformer.	M2.03	U
6.	List the different types of transformer and its applications.	M2.04	R
7.	Explain armature reaction and its effects.	M3.01	U
8.	List different types of ac motors.	M4.02	R
9.	Explain the working of universal motor.	M4.02	U
10.	List the applications of servomotors.	M4.03	R

PART-C Answer all questions from the following. Each question carries *'seven'* marks

(6 x 7 = 42 Marks)

Module Outcome Cognitive level

		Module Outcome	Cognitive level
III.	A 50Hz voltage of 230V effective value is impressed on a capacitance of 26.5μF. (i) Write the time equations for the voltage and the resulting current. Let the zero axis of the voltage wave be at t=0. (ii) Show the voltage and current on a time diagram and (iii) Show the voltage and current on a phasor diagram. OR	M1.03	A
IV.	A resistance of 20Ω , an inductance of 0.2H and a capacitance of $100\mu F$ are connected in series across 220V, 50Hz mains. Determine the following (i) Impedance (ii) Current (iii) Voltage across R, Land C (iv) Power factor.	M1.04	A
V.	Calculate the Thevenin resistance, Thevnin voltage and voltage across the 4 ohm resistor for the following circuit.	M2.02	A
	1 ohm 3 ohm 4 ohm OR		
VI.	Find the current flowing through the $100~\Omega$ resistor using the superposition theorem. 100Ω $5V$ $10A$ 50Ω	M2.02	A
VII.	State and explain Kirchhoff's voltage law and current law. OR	M2.01	U
VIII.	Derive the EMF equation of transformer.	M2.03	U
IX.	Explain the working principle of DC Generator. OR	M3.01	U
X.	Explain the working of a 3-point starter.	M3.03	U
XI.	Explain the working principle of DC motor. OR	M3.02	U
XII.	Draw and describe the classification of DC generators according to field connection.	M3.01	U
XIII.	Explain the working of an AC servomotor.	M4.03	U
3/13/	OR	N. 6.4.0.4	P
XIV.	Compare squirrel cage and slip-ring induction motor.	M4.04	R
